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A proper orthogonal decomposition (POD) analysis and low-dimensional modelling
of thermally driven two-dimensional flow of air in a horizontal rotating cylinder,
subject to the Boussinesq approximation, is considered. The problem is unsteady due
to the harmonic nature of the gravitational buoyancy force with respect to the rotating
observer and is characterized by four dimensionless numbers: gravitational Rayleigh
number (Rag), the rotational Rayleigh number (RaΩ ), the Taylor number (Ta) and
Prandtl number (Pr). The data for the POD analysis are obtained by numerical
integration of the governing equations of mass, momentum and energy. The POD is
applied to the computational data for RaΩ varying in the range 102–106 while Rag

and Pr are fixed at 105 and 0.71 respectively. The ratio of Ta to RaΩ is fixed at
100 so that the results apply to physically realistic situations. A new criterion, in the
form of appropriately defined error norms, for assessing the truncation error of the
POD expansion is proposed. It is shown that these error norms reflect the accuracy
of the POD-based reconstructions of a given data ensemble better than the widely
employed average energy criterion. The translational symmetry in both space and time
of the pair of modes having degenerate (equal) eigenvalues confirms the presence of
travelling waves in the flow for several different RaΩ values. The shifts in space
and time of the structure of the degenerate modes are utilized to estimate the wave
speeds in a given direction. The governing equations for the fluctuations are derived
and low-dimensional models are constructed by employing a Galerkin procedure. For
each of the five values of RaΩ , the low-dimensional models yield accurate qualitative
as well as quantitative behaviour of the system. Sufficient modes are included in the
low-dimensional models so that the modelling of the unresolved scales of motion
is not needed to stabilize their solution. Not more than 20 modes are required in
the low-dimensional models to accurately model the system dynamics. The ability
of low-dimensional models to accurately predict the system behaviour for a set of
parameters different from those from which they were constructed is also examined.

1. Introduction
The proper orthogonal (POD) or Karhunen–Loève (K–L) decomposition is

an established technique for extracting the most ‘energetic’ or dominant spatial
structures in the average sense from an ensemble of functions representing an
infinite-dimensional process. Once the spatial structure of the ensemble is captured
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in the spatial basis functions or modes, the members of the ensemble can be
represented as linear superpositions of these modes. The advantage of using the
proper orthogonal or K-L basis is that finite truncations of the modal expansion of
the ensemble members yield the smallest error in the mean-square sense compared
to the other possible orthogonal bases having the same dimension. In the context of
fluid mechanics, this means that the structure of a complex spatio-temporal field like
the velocity field could be captured in an average sense by a relatively small number
of POD modes. If the partial differential equations, like the Navier–Stokes equations,
governing the fluid flow are projected onto these spatial POD modes, a system of
ordinary differential equations for the temporal coefficients is obtained. Hence, the
time evolution of the system could be studied in a state space involving few degrees
of freedom, making it easier to investigate the underlying physics.

1.1. Related literature

The earliest attempts to apply the above ideas in studying fluid motions were in
the context of identifying and studying the role and dynamics of large-scale average
spatial structures of the fluctuating velocity field of a turbulent flow. The POD
provides an objective way of identifying such structures. The extraction of dominant
spatial structures using POD in classical turbulent shear flows has been discussed in
the works of Bakewell & Lumley (1967), Herzog (1986), Glauser & George (1987)
and Kirby, Boris & Sirovich (1990). Low-dimensional models based on POD have
been developed by Aubry et al. (1988), Sanghi & Aubry (1993), Moin & Moser (1989)
and Sirovich & Park (1990).

Most of the studies involving POD and low-dimensional modelling have been
performed on turbulent flows. There have been very few involving the application
of POD to unsteady laminar flows where the unsteadiness is either due to inherent
instabilities or due to some unsteady forcing. More recently, however, applications of
POD to problems like driven cavity flows and flow past bluff bodies have appeared
in literature; see for Cazemier, Verstappen & Veldman (1998), Ma & Karniadakis
(2002) and Galleti et al. (2004).

There are few studies involving the application of POD and POD–Galerkin
modelling of flows with heat transfer. Turbulent Rayleigh–Bénard convection
problems were considered by Sirovich & Park (1990) and Sirovich & Deane (1991).
Deane & Sirovich (1991) investigated the change in the structure of the flow field
with increase in Ra for chaotic Rayleigh–Bènard convection. Sahan, Liakopoulos &
Gunes (1997) identified the organized spatio-temporal structures in transitional flow
with heat transfer in a periodically grooved channel. In that study, the buoyancy
effects were neglected and the eigenfunctions for velocity and thermal fields were
calculated separately. Low-dimensional models based on four modes yielded accurate
results. Podvin & Le Quéré (2001) investigated the two-dimensional buoyancy-
driven flow of air in a differentially heated tall cavity. They employed a coupled
type of decomposition, where composite vector eigenfunctions having components
representing the velocity and thermal fields were obtained. For a slightly supercritical
Rayleigh number they have shown that a two-mode model captures the dynamics
reasonably accurately. At some distance from the critical point the flow becomes
chaotic and a ten-dimensional model successfully captures the dynamics. Thus, POD
analysis and the associated low-dimensional modelling is an effective reduction tool
not only for turbulent flows but also for transitional laminar flows.

The next subsection briefly introduces the problem previously investigated by the
present authors that is the subject of the POD analysis and low-dimensional modelling
in the present work.
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Figure 1. Geometry of the problem.

1.2. Thermally driven flow in a steadily rotating horizontal cylinder

This work applies POD and POD–Galerkin models to study the problem of two-
dimensional thermally driven flow in a horizontal steadily rotating cylinder. The
problem has applications in thermal energy storage systems undergoing rotation
and in the design of cooling systems for rotating machinery. The problem has been
investigated numerically by Hasan & Sanghi (2004, hereafter referred to as HS). A
Cartesian frame of reference attached to the rotating cylinder was employed in the
study. To an observer attached to the cylinder, the gravity vector rotates, resulting
in a time-periodic gravitational buoyancy force driving the flow. Thus, the problem
involves unsteady forcing and is therefore inherently unsteady in nature. It is assumed
that the cylinder has been rotating steadily for a sufficient length of time that the
fluid is in a state of solid-body rotation under isothermal conditions. A temperature
perturbation in the form of a periodic cosine function of the angular location of
a spatial point is imposed on the wall of the cylinder, as shown in figure 1. The
fluid motion relative to the rotating cylinder is induced by the combined action
of gravitational buoyancy (GB) and centrifugal or rotational buoyancy (RB). The
dimensionless governing equations of mass, momentum and energy subject to the
Boussinesq approximation in a Cartesian frame rotating with the cylinder are

mass

∇ · V = 0, (1)

momentum

DV
Dτ

= −∇pm − RagPr θ n̂g − RaΩPr θ r − 2Ta1/2Pr(k̂ × V ) + Pr∇2V , (2)

energy equation

Dθ

Dτ
= ∇2θ. (3)

The vector n̂g in (2) is the unit vector indicating the instantaneous direction of the
rotating gravity vector and is defined as

n̂g = −î sin
(
Ta1/2Pr τ

)
− ĵ cos

(
Ta1/2Pr τ

)
.

The length, time and velocity scales employed to transform the equations to their
dimensionless forms are R, R2/κ and κ/R respectively, where the cylinder radius is
R and the thermal diffusivity of the fluid κ . The term pm in (2) is the dimensionless
change in pressure with respect to the pressure in the solid-body rotation state under
isothermal conditions. This is the rotational analogue of piezometric pressure. The
temperature in the governing equations appears in the form of a dimensionless change
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with respect to the isothermal conditions that prevail prior to the application of the
temperature perturbation at the wall. The formal definitions of pm and θ are

pm =
(P − P0)R

2

ρ0κ2
, θ =

(T − T0)

�T
. (4)

In the solid–body rotation state, the fluid is taken to be at a uniform temperature T0

and density ρ0. The amplitude of the periodic temperature perturbation is represented
as �T . The dimensional pressure P0 in a state of rest with respect to the rotating
frame under isothermal conditions is given by the momentum equation as

∇P0 = ρ0(g − Ω × Ω × r), (5)

where Ω is the steady rotation rate of the frame attached to the rotating cylinder.
Equations (1)–(3) together with the no-slip boundary conditions for the velocity and
the specified temperature perturbation (figure 1), govern the motion of the fluid
relative to the rotating frame. From (2) it is readily seen that the relative motion
can be induced by buoyancy forces associated with the gravity and the centrifugal
accelerations.

Some remarks on the two-dimensional flow assumption are worth making. In a
steadily rotating cylinder under isothermal conditions, the state of solid-body rotation
would exist. If the cylinder is assumed to be sufficiently long, then excluding the end
effects, the imposed temperature perturbation (figure 1) generates the buoyancy forces
(gravitational and rotational) whose variation along the cylinder axis (z-direction,
figure 1) may be neglected. Thus these buoyancy forces induce a fluid motion, relative
to the solid-body rotation, that can be approximated as two-dimensional in character
provided the end effects are neglected. As the rotation axis is perpendicular to
the gravity vector, the buoyancy forces are confined to the cross-sectional planes,
thereby inducing an approximately two-dimensional fluid motion confined to the
cross-sectional planes in the central portion of the cylinder. For such an induced
velocity field, the Coriolis force, as seen from (2), lies completely in the (x-y)-plane
and does not induce any motion in the z-direction. Hamady et al. (1994), working
with a rotating square-cross-section cylinder having a length 10 times the edge of the
cross-section, found excellent agreement between experimental and numerical results
on the basis of two-dimensional numerical computations.

An interesting observation can be made regarding the role of the Coriolis force
for the problem under consideration. It can be readily verified from (2) that the
Coriolis force is irrotational in character. This is primarily due to the two-dimensional
approximation of the flow field and the Boussinesq approximation that constrains
the velocity field to be divergence free. The irrotational character implies that the
Coriolis force combines with the pressure field to generate an effective pressure field
that, for the present problem, evolves as a function of the velocity and the thermal
fields. Thus the Coriolis force only affects the pressure field and does not play any
role in the evolution of the velocity and the thermal fields.

The dimensionless system (1)–(3) has four dimensionless parameters, namely
(i) gravitational Rayleigh number (Rag), (ii) Rotational Rayleigh number (RaΩ ),
(iii) Taylor number (Ta) and (iv) Prandtl number (Pr). These are defined as

Rag =
gβ�TR3

νκ
, RaΩ =

Ω2β�TR4

νκ
, Ta =

Ω2R4

ν2
, Pr =

ν

κ
, (6)
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where β and ν are the coefficient of volume expansion and the kinematic viscosity
of the fluid respectively, while g and Ω are the acceleration due to gravity and the
steady rotation rate of the cylinder.

It was shown by Ker & Lin (1996) that, in order to obtain physically realizable
solutions, it is important to recognize that the ratio T a/RaΩ from (6) is equal to
1/(β �T Pr). Therefore, while the parameters Rag and RaΩ can be varied indepen-
dently, the values of Ta must be chosen so that the ratio is maintained within practical
limits. The numerical investigation by HS was carried out at a fixed Rag = 105 and
Pr = 0.71, while RaΩ was varied from 102 to 106. The ratio of Ta and RaΩ was fixed
at 100. As an aid to understanding the results obtained from the POD analysis and
low-dimensional models in the present study, the main computational findings of the
numerical investigation performed earlier by the authors are presented in the next
section.

1.3. Summary of the computational findings

The computational study of HS correlated the spatio-temporal dynamics and the heat
transfer characteristics to the changes in RaΩ and Ta over a wide range at a fixed
Rag = 105 and Pr =0.71. The computational study revealed that for RaΩ < 105 the
spatial structure of the flow is quite sensitive to the changing orientation of the gravity
vector in the rotating frame. The flow exhibits a periodic behaviour with frequency
locked onto the rotation frequency of the gravity vector with temporal variations
in the flow caused by harmonic forcing of the gravitational buoyancy force. For
RaΩ > 105, the large-scale spatial structure of the flow is quite insensitive to the
harmonic time-varying gravitational buoyancy force. Examination of the temporal
structure via fast Fourier transformation (FFT) revealed bifurcations from periodic
to quasi-periodic states for RaΩ ∈ [106, 107]. It was shown that the mean heat
transfer characteristic is highly non-monotonic, indicating the aiding and mitigating
effects of rotation on convection in different ranges of RaΩ . At low rotation rates
(RaΩ ∼ 103), the flow is governed essentially by the gravitational buoyancy force
with large amplitudes of fluctuation, while the centrifugal effects were found to be
negligible. As RaΩ is increased, the role of gravity progressively diminishes and the
fluctuation levels become extremely small to render the flow almost as steady as RaΩ

approaches a value of 105. The flow for RaΩ ∈ [5 × 105, 107] is driven essentially by the
centrifugal or rotational buoyancy forces. In this range, the large-scale flow structure
consists of a two-cell convection with the interface of the cells aligned along the
horizontal diameter, and an increase in RaΩ brings about an increase in convection.
The two cells become increasingly distorted and multiple rolls appear, as an outcome
of bifurcations to quasi-periodic states, as RaΩ approaches 107. In the range given by
2 × 103 � RaΩ � 5 × 105, the flow is controlled by both the body forces. Under the
competing influence of the two buoyancy forces, it is shown that the convection is in
general suppressed, with very low flow velocities and associated heat transfer.

To summarize, the flow problem chosen exhibits a rich and diverse flow behaviour
owing to the presence of: (a) multiple driving forces and (b) an unsteady driving force.
Further, in the gravity-dominated flow regime, the amplitude as well as frequency of
the unsteady buoyancy force combine to generate interesting flow dynamics.

The current study is motivated by the fact that, for a complex unsteady flow such
as the one under consideration, the POD analysis can provide useful information
regarding the flow physics by representing the flow in terms of few modes.
Furthermore, it is of interest to examine the feasibility of constructing low-dimensional
models and to assess the performance of such models, particularly for flows driven
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by unsteady forces. The procedure for carrying out the decomposition and the results
of the decomposition are presented in the next section.

2. POD analysis
2.1. Numerical simulations

The data for carrying out the POD analysis and the construction of low-dimensional
models are taken from the numerical study of HS. The scheme has been described in
detail in HS and in Hasan, Anwer & Sanghi (2005).

The numerical integration of (1)–(3) was performed through a semi-explicit pressure
correction scheme as described by Hirsch (1990). The discretization is of finite-
difference type on a Cartesian colocated grid. The scheme is first-order accurate
in time. A second-order central differencing is employed for the convective terms
near boundary points while a hybrid third-order upwinding or fourth-order central
differencing depending on the local cell Péclet number is utilized in the interior.
The diffusion terms are discretized by employing a fourth-order symmetric five-point
stencil in the interior and a second-order symmetric three-point stencil near the
boundary. The pressure gradient terms in the momentum equations are discretized
using a two-point central differencing stencil.

The boundary of the flow domain under consideration is a solid impervious
boundary. Thus no-slip conditions for velocity are specified at the wall of the cylinder.
The temperature is specified in the form of a periodic distribution:

θ = −cos(α).

The pressure at the wall is obtained by applying the normal momentum equation.

2.2. Proper orthogonal decomposition: theory

Let Um = U(x, τm), m =1, . . . , M be M realizations or snapshots of the fluctuating flow
field obtained through experimentation or numerical simulations. In the present case,
the snapshot Um ≡ (U1, U2, U3)

m comprises both the fluctuating velocity components
(U1 = u′, U2 = v′) and the fluctuating temperature field (U3 = θ ′) assigned at each point.
The K-L basis functions φ are taken to be vector functions with three components at
each point (φ1, φ2, φ3) associated with the two velocity components and the thermal
field. The vector space in which the decomposition is sought has an inner product
defined as

( f , g) =

∫
D

(f1g1 + f2g2 + γf3g3) dA.

As pointed out by Lumley & Poje (1997), the introduction of a scaling factor γ is
necessary to balance the velocity and temperature fluctuation energies so that the K-L
basis captures the structure of the most energetic fluctuations of both the temperature
and the velocity fields in a composite manner. They have shown that the proper value
of γ that maximizes the average of the square of the projection of the data onto the
basis function φ is

γ =

∫
Ω

〈(u′u′ + v′v′)〉 dA∫
Ω

〈θ ′θ ′〉 dA

, (7)

The K-L basis function φ is governed by the integral eigenvalue problem∫
Ω

Rij (x, x ′) φj (x
′) dA = λφi(x), (i, j ) ∈ {1, 3}, (8)
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Mode number Value Snapshots = 16 32 64 128

1 λ(1) × 10−4 1.453 1.453 1.453 1.453
2 λ(2) × 10−3 4.726 4.724 4.724 4.724
3 λ(3) × 10−3 2.119 2.118 2.118 2.118
4 λ(4) × 10−2 7.671 7.664 7.664 7.664
5 λ(5) × 10−2 2.462 2.456 2.456 2.456
6 λ(6) × 10−2 2.199 2.151 2.151 2.151
7 λ(7) × 10−1 8.446 8.444 8.444 8.444
8 λ(8) × 10−1 6.616 6.288 6.286 6.286
9 λ(9) × 10−1 4.663 4.074 4.073 4.073

10 λ(10) × 10−1 2.810 2.353 2.353 2.352

Table 1. Convergence of the first ten eigenvalues with increasing number of snapshots
at RaΩ = 102.

where

Rij (x, x ′) = 〈Ui(x, τ )Uj (x
′, τ )〉.

The eigenvalue problem in (8) yields a countably infinite orthogonal set of
eigenfunctions {φ}∞

1 and non-negative eigenvalues {λ}∞
1 (Holmes, Lumley & Berkooz

1996). The K-L basis is utilized for carrying out the decomposition of the flow field
as

U(x, τ ) =

∞∑
1

a(p)(τ )φ(p)(x). (9)

Once the eigenfunctions are known and normalized such that (φ(p), φ(p)) = 1.0, the
temporal coefficients in (9) can be readily obtained as

a(p)(τ ) =
(
U, φ(p)

)
. (10)

The total energy captured by the expansion in the average sense is

E = 〈(U, U)〉 =
∑

p

∑
r

〈
a(p)a(r)

〉(
φ(p), φ(r)

)
=

∑
λ(p). (11)

If the eigenvalues {λ}∞
1 are ordered such that λ(1) > λ(2) > λ(3) . . . , the sequence

on the right of (9) converges more rapidly than with any other basis. The most
commonly employed criteria for truncating the infinite sequence in (9) is the retention
of the number of modes which capture more than 90 % of the average energy in the
ensemble U i with the condition that none of the neglected modes has more than 1 %
of the energy of the most energetic mode (Deane & Sirovich 1991).

In this work, the eigenfunctions φ have been determined using the method of
snapshots proposed by Sirovich (1987).

2.3. POD results

From this point onwards, unless stated otherwise, it is understood that ‘snapshot’
refers to the instantaneous spatial distribution of the fluctuating flow field. For each
of the cases, the number of snapshots adequate for the decomposition is determined
by carrying out a snapshot independence study. A typical outcome is shown in table 1
for the case of RaΩ =102. It can be observed that the leading ten eigenvalues do
not change significantly for 32 snapshots or more. A similar study is carried out for
other cases of RaΩ . For the periodic flows found to occur for RaΩ = 102 − 105, 32
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Figure 2. Eigenvalue spectra at (a) RaΩ = 102, (b) RaΩ = 103, (c) RaΩ = 104,
(d) RaΩ =105 and (e) RaΩ = 106.

snapshots have been taken for the determination of the modes or eigenfunctions. For
the quasi-periodic case of RaΩ = 106, a set of 400 snapshots has been employed.

Figures 2(a)–2(e) show the eigenvalue spectra for different value of RaΩ . The fast
convergence of POD modes is readily shown by the fact that a small number of



POD and low-dimensional modelling of thermally driven rotating flow 273

modes is needed to capture almost 99 % of the energy of the snapshots in the average
sense. The fraction of energy captured by first N modes is

EN/E =

N∑
1

λ(p)

/ M∑
1

λ(p).

At RaΩ = 102, seven modes capture more than 99 % of the total energy; for RaΩ = 103,
eight modes are needed. For RaΩ = 104 and RaΩ = 105 only two modes are sufficient,
since as discussed earlier the flow is almost steady for these two cases. For RaΩ = 106,
only six modes are needed.

Note that the eigenspectra for RaΩ = 104 and RaΩ = 105 (figure 2(c) and
figure 2(d)) exhibit two dominant modes whose energy content is much higher than
the remaining modes. This reflects the fact that the structure of the unsteady flow is
relatively simple and is the outcome of the dynamic evolution and interaction of only
a few scales of motion.

The cut-off criterion based on average energy does not directly reflect the accuracy
with which the corresponding number of modes can be used to reconstruct the original
data ensemble or snapshots. This is even more significant for flows involving combined
decompositions of fields fundamentally different in character such as the velocity and
the thermal fields in the present study. The POD reconstructions of the velocity and
thermal fields may converge at different rates and a single lumped criterion based on
average energy may not be able to reflect this. In this work we propose a different
approach for specifying the cut-off limits for the truncation of the expansion in (9).
Let V N be the fluctuating flow field reconstructed by retaining the first N modes
of the expansion in (9). The temporal coefficients required for the evaluation of the
expansion are obtained using equation (10). The error norms, EN

j , j = 1, 2 or 3,
representing the accuracy of the spatial structure of a given snapshot U obtained via
reconstruction using the leading ‘N ’ POD modes, are defined as

EN
j =

(∫
Ω

(
Uj − V N

j

)2
dA

/∫
Ω

U 2
j dA

)1/2

, j = 1, 2 or 3. (12)

This is a quantitative measure that reflects directly the accuracy of the reconstruction.
These error norms are evaluated for the entire data ensemble comprising M snapshots
for a fixed number of POD modes. The maximum values of these error norms
(EN

1 max, E
N
2max, E

N
3max) over the entire data ensemble for a given number of modes are

taken as a quantitative measure of accuracy with which the data ensemble can be
represented with a given number of modes. By specifying limits on these error norms,
the number of modes that will provide a reconstruction within a specified level of
accuracy over the entire time interval of the data ensemble can be determined. Such
a procedure has not been utilized in earlier works involving non-turbulent flows and
its significance is shown in this work.

Table 2 shows the number of POD modes or dimensions needed for accurate
representation of the data for different cases of RaΩ . As expected the error decreases
quite rapidly with increase in the number of modes. An interesting comparison
between the maximum values of the three error norms, the fraction of average
energy captured by a given number of POD modes (N), is also presented in table
2. For RaΩ = 102, five modes capture 97.798 % of the total energy while the error
norms indicate that reconstructions of the fluctuating flow field using five modes
yields significant maximum r.m.s. deviations of 36.49 %, 29.80 % and 23.98 % in
the velocity components and the temperature field respectively. This shows that the
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RaΩ N EN
1max EN

2max EN
3max

N∑
1

λ(p)/Σλ

1 1.28799 1.28153 1.05764 0.63481
5 0.36491 0.29804 0.23976 0.97798

102 10 0.11922 0.13242 0.12177 0.99663
15 0.05463 0.04679 0.06110 0.99919
20 0.02302 0.02225 0.03037 0.99985

1 1.03513 1.02374 1.00630 0.42257
5 0.72120 0.41420 0.25363 0.95644

103 10 0.16260 0.08538 0.06714 0.99646
15 0.05231 0.03749 0.03687 0.99925
20 0.02511 0.01600 0.01449 0.99986

1 0.99894 1.02038 1.00424 0.54778
2 0.01832 0.02856 0.02924 0.99967

104 3 0.01163 0.01172 0.02211 0.99986
4 0.00065 0.00088 0.00094 1.00000

1 1.00238 1.00410 0.99986 0.56526
2 0.00411 0.00479 0.00515 0.99998

105 3 0.00338 0.00287 0.00501 0.99999
4 0.00006 0.00006 0.00005 1.00000

1 1.00902 1.00063 1.00303 0.55686
106 5 0.17141 0.17715 0.21381 0.98728

10 0.02596 0.03273 0.04427 0.99920

Table 2. Convergence characteristics of the POD expansion and the variation in the error
norms with increase in the number of modes for different RaΩ .

energy criterion can be misleading as far as accuracy of the reconstruction of the data
ensemble is concerned. A similar observation can be made for all the other cases. The
maximum r.m.s. deviations are brought close to 5 % or less by the number of modes
that capture greater than 99.9 % of the average energy. Thus, to achieve an accurate
reconstruction of the flow under consideration a 99.9 % energy criterion appears
suitable. However, while the energy criterion may vary from problem to problem and
is hard to predict a priori, the criterion based on error norms allows one to achieve
any desired level of accuracy in POD reconstructions. The fact that the velocity
and thermal fields converge at different rates is also illustrated clearly in table 2.
Consider the reconstruction of the flow field at RaΩ =103 using 10 modes. The values
of the error norms are 16.26 %, 8.54 % and 6.7 %. From the energy criterion, 10
modes capture 99.6 % of the energy with only 0.22 % of the energy in the neglected
11th mode. The energy criterion, therefore, gives a false sense of accuracy. Further, a
single lumped criterion is not sensitive to the difference in the convergence rates of
the velocity and the thermal fields.

From a qualitative viewpoint, it can be shown that the spatial structure of the ins-
tantaneous flow field as obtained by direct numerical simulations (DNS) can be
captured using only few modes. Figure 3 shows the flow-field reconstruction for the
case of RaΩ = 102. From a qualitative viewpoint, 10 modes appear to capture the
instantaneous flow structure very well. For the case of RaΩ = 104, only two modes cap-
ture the structure of the instantaneous flow field quite accurately (figure 4). It is evident
from these figures that the large-scale structure of the unsteady flow field is captured
quite well by a small number of modes. At RaΩ =106, the flow is quasi-periodic and
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(a) (b)

(c) (d)

Figure 3. Comparison of the streamline (left) and isotherm (right) patterns reconstructed
using POD modes with the numerical simulations at τ = 1.17 for RaΩ = 102. (a) DNS snapshot,
(b) 5 modes, (c) 10 modes, (d) 15 modes.

(a) (b)

(d)(c)

Figure 4. Comparison of the streamline (left) and isotherm (right) patterns reconstructed
using POD modes with the numerical simulations at τ = 1.0019 for RaΩ = 104. (a) DNS
snapshot, (b) 1 mode, (c) 2 modes, (d) 4 modes.

the complexity of the flow structure increases as indicated by the DNS snapshot in
figure 5. The details of the flow structure are captured well by an eight-mode POD
expansion. The error norms are reduced to less than 5 % for 10 modes as seen from
table 2. Similar results for reconstruction were found for other values of RaΩ .
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(a) (b)

(c) (d )

Figure 5. Comparison of the streamline (left) and isotherm (right) patterns reconstruction
using POD modes with the numerical simulations at τ = 1.6473 for RaΩ = 106. (a) DNS
snapshot, (b) 2 modes, (c) 4 modes, (d) 8 modes.

p = 3 p = 4 p = 7

p = 9 p = 10

p = 8

Figure 6. The spatial structures of the contributions of pairs of POD modes having equal
eigenvalues to the temperature field at τ = 2.575 at RaΩ = 103.

Returning to the eigenvalue spectra in figure 2, it is observed that for RaΩ = 103

(figure 2b), a number of eigenvalues are degenerate, i.e. occur in pairs. The eigenvalues
for modes (3, 4), (7, 8) and (9, 10) are some of the more energetic degenerate pairs. The
degeneracy of the eigenspectrum has its roots in the symmetries of the flow solution
as demonstrated in Aubry, Guyonnet & Lima (1992), Aubry & Lian (1993), Aubry
& Lima (1995) and Aubry (1991). To observe such symmetries, time histories of the
temporal coefficients of a degenerate pair of modes (a(q)(t), a(q + 1)(t)) and the contribu-
tions of the individual modes of the selected degenerate pair to the flow field at an in-
stant are compared. Figure 6 shows the spatial structure of the individual contributions
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Figure 7. The time evolution of temporal coefficients of degenerate pairs of modes at
RaΩ = 103.

of POD modes having equal eigenvalues to the thermal field at τ = 2.575. It is observed
that the contour patterns are shifted in the circumferential direction. This clearly
suggests a translational shift in the circumferential direction in the spatial structure of
the degenerate pair of modes. Some of the structures experience some distortion along
with this shift. The distortion is expected due to nonlinear convective interactions and
diffusive effects. Figure 7 compares the time histories of the coefficients for several
degenerate pairs of modes. It is readily seen that the pair of coefficients a(3) and a(4),
as well as other pairs, are almost identical except for a phase shift in time. In order
to highlight the spatial shift in the circumferential direction of the structures of the
eigenfunctions φ(3) and φ(4), the components φ

(3)
3 and φ

(4)
3 are plotted in figure 8 as

functions of the angular coordinate α (positive in the counterclockwise sense) in the
rotating frame at a fixed radius of 0.85. It is readily observed that the spatial structures
of φ

(3)
3 and φ

(4)
3 exhibit a translational symmetry in the circumferential direction. While

mode 3 is shifted in the counterclockwise direction relative to mode 4 in space, mode
3 also leads mode 4 in time (figure 7). This clearly suggests that the degenerate pair (3,
4) represents a propagating structure or a travelling wave in the clockwise direction
with the flow. Rempfer & Fasel (1994) also exploited the space–time symmetry of
a propagating flow structure to demonstrate the existence of travelling waves in a
transitional boundary-layer flow over a flat plate. Similar space–time symmetries are
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Figure 8. Variation of the temperature eigenfunctions φ3 in the circumferential direction
at a radius of 0.85 for the degenerate pair (3, 4).

exhibited by other degenerate pairs. The deviations from the perfect translational sym-
metry in space and time can be attributed to the fact that the propagating structures
represent modulated travelling waves. Thus it can be argued that at RaΩ = 103 the flow
exhibits travelling waves propagating in the circumferential direction. In the numerical
study of HS, it was argued on the basis of spatial flow structure that at RaΩ = 103, the
centrifugal buoyancy force is too weak to exert any significant influence on the flow. To
confirm this, numerical simulations were performed by neglecting the centrifugal buoy-
ancy term in (2) for different values of RaΩ in the range 103 < RaΩ < 104. Figure 9
compares the time history of the v velocity at (−0.72, 0) obtained through numerical
solution of the full equations (1)–(3), to the time history obtained by neglecting the
centrifugal buoyancy term at RaΩ = 1.2 × 103. It is readily verified that for such a
low value of RaΩ , the centrifugal effects are insignificant. Thus the travelling waves
found are generated due to the combined action of gravity, the fluid inertia and the
viscous forces. Such waves have not been reported in the earlier studies of Hamady
et al. (1994) and Ker & Lin (1996) on rotating rectangular containers.

For the case of a traveling wave, as pointed out by Aubry et al. (1992), the space–
time shifts in the POD eigenfunctions and the temporal coefficients for a given
degenerate pair of modes can be exploited to determine the wave speed (phase speed
of the wave). For a uniformly traveling one-dimensional wave, the phase speed of the
wave can be determined by the ratio of the spatial and the temporal shifts observed
in the eigenfunctions and the temporal coefficients of the degenerate pair of modes
(Aubry et al. (1992)). The situation is somewhat complex for a multi-dimensional
scenario with the direction of wave propagation not necessarily coinciding with
the coordinate directions. Thus different spatial shifts in the eigenfunctions would
be recorded in different directions. In the present context, it has been shown that
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Figure 9. Comparison of time histories of v velocity at (−0.72, 0) obtained by neglecting
the rotational buoyancy (RB) with the data obtained from the full set of equations at
RaΩ = 1.2 × 103.

the waves are propagating pre-dominantly in the circumferential direction in the
clockwise sense at RaΩ = 103. The presence of such waves is also confirmed, in a
similar manner, for neighbouring values of RaΩ = 1.2 × 103, 1.5 × 103, 1.7 × 103 and
1.9 × 103. The major concern in estimating the circumferential wave speeds is the fact
that the translational shifts in the temporal coefficients and the eigenfunctions for a
degenerate pair are not uniform in time and space respectively. Therefore, estimates
of the average circumferential wave speed (c̄α) at a particular radius of 0.85 are
made on the basis of the average translational shifts (both in space and time) in the
structure of the degenerate pair of modes. Table 3 compares these circumferential
wave speeds to the time-mean spatially averaged circumferential flow velocity (ūα) at
the same radius in order to obtain some insight into the wave properties. For all the
values of RaΩ , the circumferential waves are observed to propagate in the clockwise
direction which is also the general direction of the flow velocities. It is interesting to
observe that the ratio c̄α/ūα lies in the range 0.47–0.8.

For RaΩ = 106, the flow exhibits quasi-periodicity as reported in the computational
study of HS. At this RaΩ , the POD eigenvalue spectrum in figure 2(e) again hints at
the existence of propagating structures or travelling waves in the form of degenerate
eigenvalues. The eigenvalues for modes 5 and 6 and modes 7 and 8 are nearly
identical. The spatial structure of the contribution of these modes to the fluctuating
thermal field at an instant is shown in figure 10. It can be observed that the structures
represented by the 5th and 6th modes propagate along with the flow (the pattern
shown in figure 5) on either side of the horizontal diameter. Simultaneously, a shift in
the spatial structures in the circumferential direction near the hot end (left end) of the
horizontal diameter is also observed. This hints that these waves may have originated
in the boundary layers near the hot end and move with the fluid. Similar observations
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RaΩ Degenerate pair Wave speed Fluid velocity
c̄α

ūα(q, q + 1) c̄α ūα

(3, 4) 124.14 0.807
1.0 × 103 153.84

(7, 8) 119.42 0.774
(3, 4) 87.94 0.516

1.2 × 103 170.48
(5, 6) 1.14 0.476
(3, 4) 101.73 0.537

1.5 × 103 189.50
(5, 6) 7.03 0.512
(3, 4) 8.76 0.495

1.7 × 103 199.49
(5, 6) 9.12 0.497
(3, 4) 136.89 0.659

1.9 × 103 207.85
(5, 6) 8.52 0.474

Table 3. Average wave speeds (clockwise circumferential direction) at a radius of 0.85
for different propagating structures at different RaΩ . Wave speeds are compared with the
time-mean, spatially averaged circumferential flow velocity (also clockwise) at a radius of 0.85.

can be made for the 7th and 8th modes. In order to confirm the propagation of
waves along the horizontal diameter (y = 0), the structure of the temporal coefficients
and the eigenfunctions φ3 for the degenerate pairs (5, 6) and (7, 8) are compared in
figure 11(a) and figure 11(b) respectively. The space–time translational shifts are again
observed, providing clear evidence of the presence of propagating or travelling waves.
Modes 5 and 7 are shifted towards the right in both the spatial and the temporal
domains with respect to mode 6 and 8 respectively. This is clear evidence of the
wave propagating along y =0 in the positive x-direction (from the hot end towards
the cold end) of the rotating enclosure. From figure 11(b), it can be observed that
the spatial translational shifts are large near the hot end (x = −1) and progressively
decrease towards the cold end (x =1). This suggests that wave speeds are much higher
near the hot end and progressively decrease as the wave propagates towards the cold
end. At RaΩ =106, the flow is primarily driven by centrifugal or rotational buoyancy
force with effects of gravity becoming quite insignificant. Thus, it is the interaction of
viscous, centrifugal buoyancy and the inertia forces that is responsible for the waves
at this RaΩ .

3. Low-dimensional models
In this section the construction and performance of low-dimensional models based

on the empirical eigenfunctions obtained during the course of the POD analysis is
discussed. In § 3.1 issues regarding construction of these models are addressed. In
§ 3.2 the validation of the low-dimensional models is presented. Finally in § 3.3 their
performance for parameters different from the ones from which they were constructed
is examined.

3.1. Construction of POD–Galerkin models

The low-dimensional model refers to the system of ODEs governing the evolution of
temporal coefficients in (9). The standard procedure for obtaining such a system of
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p = 5 p = 6

p = 7 p = 8

Figure 10. The spatial structures of the contributions of pairs of POD modes having equal
eigenvalues to the temperature field at τ =1.605 at RaΩ = 106.

ODEs is Galerkin projection. In this procedure the governing equations for the flow
field are projected onto the individual POD modes or basis functions.

As mentioned by Rempfer (2000), the Galerkin projection requires the basis
functions to fulfil certain conditions. In the context of a Galerkin procedure for
an incompressible flow, the basis functions should be capable of representing all
solenoidal velocity fields that satisfy the boundary conditions. In this regard, the
POD eigenfunctions provide an excellent choice of basis functions as any property or
boundary condition of the flow, which is expressed via linear homogenous equations, is
passed on to these individual basis functions. The incompressibility constraint, no-slip
boundary conditions and periodic boundary conditions are some examples of such
properties. In the present study, since the POD eigenfunctions have been obtained for
the fluctuating component of the flow field, the homogeneous boundary conditions for
the fluctuating or unsteady flow (u′ = v′ = θ ′ =0) are passed on to each eigenfunction,
making it vanish at the domain boundary. Since each individual eigenfunction is
capable of satisfying the boundary condition no compatibility constraints are imposed
on these basis functions.
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Figure 11. Comparison of the evolution of the temporal coefficients and the structure of
temperature eigenfunctions at y = 0 for the degenerate pair of modes (a) (5, 6) and (b) (7, 8)
at RaΩ = 106.

The Galerkin projection leads to an infinite system of ODEs for the temporal
modal coefficients of the form

da (p)

dτ
= F (p)

(
a(1), a(2), . . . , τ

)
, p = 1, 2, . . . , ∞. (13)

The infinite system in (13) is truncated at some level of the quantum number p to
yield the low-dimensional model, with the hope that the effect of truncation on the
system dynamics is not significant. The truncation of the infinite system in (13) will be
elaborated when the validation and performance assessment of the low-dimensional
model is presented.

In order to carry out the Galerkin projection for the present problem the governing
equations for the fluctuating or unsteady flow have been obtained. Following the Reyn-
olds decomposition approach, the instantaneous flow variables in equations (1)–(3)
are considered to be compresed of a steady or mean part and a fluctuating component.
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Symbolically this is expressed as

vi(x, y, t)= Umi(x, y) + u′
i(x, y, t),

θ(x, y, t)= Θm(x, y) + θ ′(x, y, t),
p(x, y, t)= Pm(x, y) + p′(x, y, t).

⎫⎬
⎭ (14)

Substituting in equations (1)–(3) and time averaging the terms leads to equations
governing the mean flow. The mean flow equations are then subtracted from (1)–(3)
to yield the equations for the fluctuations. The governing equations for the fluctuating
flow field in Cartesian tensor notation are

∂ u′
j

∂ xj

= 0, (15)

∂u′
i

∂τ
= RagPr

[{
(Θm + θ ′) sin

(
Ta1/2Prτ

)
−

〈
θ ′ sin

(
Ta1/2Prτ

)〉}
δi1

+ {(Θm + θ ′) cos
(
Ta1/2Prτ

)
−

〈
θ ′ cos

(
Ta1/2Prτ

)〉}
δi2

]
− 2Ta1/2Pr ei3ju

′
j

− RaΩPrθ ′xi − ∂p′

∂xi

− u′
j

∂Umi

∂xj

− Umj

∂u′
i

∂xj

− u′
j

∂u′
i

∂xj

+
∂〈u′

iu
′
j 〉

∂xj

+ Pr
∂2u′

i

∂xj ∂xj

, (16)

∂θ ′

∂τ
= −u′

j

∂Θm

∂xj

− Umj

∂θ ′

∂xj

− u′
j

∂θ ′

∂xj

+
∂〈θ ′u′

j 〉
∂xj

+
∂2θ ′

∂xj∂xj

. (17)

In equations (15)–(17), (i, j ) ∈ [1, 2].
These equations are similar to the ones employed in the work of Podvin & Le

Quéré, (2001) except for the extra terms due to the rotating frame of reference.
While the Coriolis and centrifugal terms do not pose any difficulty, the periodic
forcing by the rotating gravity vector gives rise to two terms: 〈θ ′ sin(Ta1/2Prτ )〉
and 〈θ ′ cos(Ta1/2Prτ )〉. These terms represent the correlation between the fluctuating
thermal field and the components of a unit vector indicating the instantaneous
direction of the rotating gravity vector. For a turbulent motion the correlation
between a random fluctuating thermal field and a completely organized sinusoidal
signal is expected to be very small and therefore can be neglected. However for a
non-turbulent flow, which is the subject of the present work, significant correlation
may exist. Therefore these terms are retained in the equations for the fluctuating flow
field. The information on mean flow is directly available from the data ensemble. Thus
the mean flow field (Um1, Um2, Θm) is regarded as a known input in equations (16)–(17)
and in the subsequent low-dimensional model.

The POD expansions for the fluctuating variables are substituted in (16)–(17) and
then the Galerkin projection is carried out to obtain the system of ODEs involving
the temporal coefficients. For notational convenience, the mean and the fluctuating
thermal field are denoted as Um3 and u′

3. The various correlations, i.e. 〈u′
iu

′
j 〉, needed

to close the system of equations have been expressed in terms of the POD modes in
the following manner:

〈u′
iu

′
j 〉 =

∑∑ 〈
a(r)a(s)

〉
φ

(r)
i φ

(s)
j =

∑
r

λ(r)φ
(r)
i φ

(r)
j , i = 1, . . . , 3, j = 1, 2. (18)

The correlations of type 〈θ ′ sin(Ta1/2Prτ )〉 or 〈u′
3 sin(Ta1/2Prτ )〉 can be expressed as〈

u′
3 sin

(
Ta1/2Prτ

)〉
=

∑
r

〈
a(r) sin

(
Ta1/2Prτ

)〉
φ

(r)
3 . (19)

If the expression in (19) is employed, the low-dimensional model for the temporal
coefficients would not be closed. This closure problem has arisen from the specific
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nature of the problem being studied and has not been tackled in earlier works.
One way of circumventing this closure problem is to utilize the computational data
for θ ′ directly to estimate this correlation without using the POD eigenfunctions.
However, this goes against the very spirit of a low-dimensional model, the primary
purpose of which is to capture the dynamics of the flow in terms of the evolution of
some dominant structures in the flow. Therefore the various terms that constitute
a low-dimensional model must be built or evaluated on the basis of these
dominant structures. In an attempt to incorporate the above considerations and
to simultaneously overcome the closure problem, the temporal coefficients a(r) on the
right-hand side of (19) are taken to be the DNS coefficients obtained by projecting
the modes φ(r) onto the data ensemble.

The fluctuating pressure field p′ does not make any contribution to the low-
dimensional model. This can be readily verified, since the contribution of the pressure
field via Galerkin projection given as∫

D

φ
(p)
j

∂p′

∂xj

dA,

is identically zero due to the fact that the eigenfunction is solenoidal and it vanishes
at the boundary of the flow domain.

Finally, the Galerkin projection yields the following system of equations:

da(p)

dt
= Lpr (τ )a(r) − Qprsa

(r)a(s) + Fp(τ ), p, r, s = 1, 2, . . . , ∞. (20)

Truncating the above system (20) by retaining the first N modes yields an N-
dimensional model. The definitions of the various coefficients and terms in (20) are
given in the Appendix. The term Fp(τ ) in (20) is an harmonic forcing function
associated with the rotating gravity vector as defined in the Appendix. Thus the
system in (20) has the character of a nonlinear forced oscillator.

3.2. Validation and performance of the POD–Galerkin models

In order to validate and assess the performance of the low-dimensional models, the
five values of RaΩ which have been analysed using POD are considered. Comparison
of the temporal coefficients a(p)(τ ) obtained from the low-dimensional model with
those obtained directly from the computational data is taken to be the criterion
for valid and accurate solutions of these low-dimensional models. The truncation
of the POD–Galerkin models is guided by the convergence characteristics of the
POD-mode-based reconstructions as discussed in § 2.3.

Another issue related to the truncation of the POD–Galerkin models is the effect
of neglected modes on the long-term behaviour of the low-dimensional model. It is
known that if sufficient modes are not included then the required amount of energy
of the system is not dissipated and accumulates in the first few modes or the large
scales of the motion. Thus in the large time limit, the system would become unstable.
In the present study enough modes have been chosen to ensure not only the stability
of the low-dimensional system but also the ability to accurately reproduce the system
dynamics.

For RaΩ = 102, a five-dimensional model is found to be sufficient to carry out
integration of the low-dimensional model for very long times (∼ 400 dimensionless
units) without any blowing up of the solution. The initial condition for the low-
dimensional model is taken to be the values of the temporal coefficients obtained
from the computational data at the appropriate time instant.
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At this stage, it is worth discussing the role of the scaling factor γ in the definition
of the inner product. In the work of Podvin & Le Quéré (2001), a value of unity
for the scaling factor works reasonably well and a value based on the criterion
given in (7), which equals 4.68, provides only slightly better performance of the
low-dimensional model. However, when a value of unity was tried in the present
study, the eigenfunctions failed to capture the dominant structures accurately. More
significantly, the low-dimensional model experienced rapid divergence leading to
a solution blow-up in a very short interval of time. This is not surprising when
one considers the fact that the values of γ obtained using (7) for the different
cases of RaΩ varied between 105 and 107. Therefore, it can be concluded that in
general for flows involving transport of some scalar, in addition to the velocity
components, it is important that the value of the scaling factor γ be obtained by
using (7).

Before discussing the performance of the low-dimensional models, the effect of
retaining the correlations of type 〈θ ′ sin(Ta1/2Prτ )〉 in the fluctuation equations is
examined. Figure 12 shows the time evolution of the coefficients of the leading five
POD modes obtained from a 10-mode truncated low-dimensional model (referred to
as M10) with and without the correlation term Dp (the Appendix). The values of
the coefficients obtained through projection of the modes onto the computational
data are also shown. During some time intervals the effect of neglecting Dp is barely
noticeable. However, there is a slight loss of accuracy during the other portions of the
time history but the qualitative aspects are preserved. Since estimation of the term Dp

requires a large amount of data, retaining it is justified only if the data are available
and quantitative accuracy is an important issue. For the present study, the term Dp

is retained for all the cases of RaΩ .
Figures 13–16 depict the performance of the low-dimensional models for RaΩ = 102,

104 and 106 respectively. At RaΩ = 102 (figure 13), a twenty-dimensional model
captures the temporal evolution of the modal coefficients quite faithfully. Slight
deviations are observed in the trajectories of 10th and 15th modes. However, these
modes contribute very little to the total energy and therefore the deviations are not
significant. The time period of the various temporal coefficients is found to be 0.088
dimensionless units which matches the period of rotation of the gravity vector (0.0885)
at this RaΩ . Therefore, the phenomenon of frequency-locking is captured quite well.
Another feature that can be observed is that while the more energetic structures have
a simple periodic structure in time, the less energetic structures (10th and 15th modes)
have a greater amount of complexity in their temporal structure.

As shown in the study of HS, the phenomenon of frequency-locking persists
for RaΩ � 105. This is reflected in the solution of the low-dimensional models for
RaΩ = 102 and 104(figures 13 and 14). At RaΩ =104, an 8-mode model captures the
dynamics faithfully. The time period of the various temporal coefficients is found
to be 0.00886 dimensionless units. This agrees quite well with the period of the
rotating gravity vector given as 0.00885. Similar results are obtained for other cases
of frequency-locked motion at RaΩ = 103 and RaΩ = 105. As mentioned in § 1.3, for
RaΩ � 105 the fluctuation levels of the flow decrease with increase in RaΩ . This feature
is also readily captured by the low-dimensional models. The decreasing complexity
in the flow structure, as confirmed by the POD analysis in § 2.3, is also confirmed by
the fact that the number of modes needed to accurately model the system dynamics
decreases from 20 to 8 with increase in RaΩ from 102 to 104. In fact, for the
nearly steady flow at RaΩ =105, a 4-mode model captures the temporal dynamics
faithfully.
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Figure 12. Comparison of time histories of the temporal modal coefficients obtained from a
ten-dimensional model (with and without the term Dp) and by projecting the modes onto the

computational data for RaΩ = 102.

For RaΩ = 106, the flow is quasi-periodic and the level of fluctuation begins to rise
again. Figures 15 and 16 depict the trajectories of the temporal coefficients obtained
from a ten-dimensional model. The model reproduces the dynamics quite nicely as
the trajectories follow their DNS paths.
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Figure 13. Comparison of time histories of the temporal modal coefficients obtained from a
twenty-dimensional model and the computational data for RaΩ = 102.

In order to check for any build up of errors in the solution of the low-dimensional
models, the time integrations were carried out for as long as several hundred cycles of
the gravity vector. The models did not exhibit any blow-up or even slow divergence.

One of the criticisms of the low-dimensional modelling approach is the requirement
of a large amount of data. This can be partially overcome if the low-dimensional
models constructed from data available for a limited set of the parameters also
reproduce the dynamics reasonably accurately over a range of parameters different
from the ones from which they were constructed. This is potentially attractive, but
as pointed out by Rempfer (2000), the success of a low-dimensional model in such a
situation is not guaranteed. Further, the initial velocity field employed to provide the
initial condition for the low-dimensional model must also be a part of the original
data ensemble. Thus the performance of a low-dimensional model for a set of system
parameters different from the one from which it was constructed from is worth
examining. In some recent studies, hybrid models constructed from data spanning
a range of parameters have been shown to perform reasonably well. Most of these
studies involve isothermal flows rather than flows with heat transfer.
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Figure 14. Comparison of time histories of the temporal modal coefficients obtained from
an eight-dimensional model and the computational data for RaΩ = 104.

3.3. Performance of the hybrid models

The simplest strategy to construct a hybrid model is to combine the snapshots obtained
for different sets of parameters spanning the range of interest into a single data
ensemble. The data ensemble comprising this mix of snapshots is then decomposed
into modes, which could then be utilized to construct the low-dimensional model. An
other way is to decompose the sets of snapshots for different parameters into modes
and then perform a Gram–Schmidt orthogonalization on the different sets of modes
to yield a combined orthogonal set of modes. In this work we adopt the former
strategy, as adopted earlier by Ma & Karniadakis (2001). A set of 32 snapshots
from each numerical database at RaΩ = 102 and RaΩ = 103 is taken and a single data
ensemble is formed comprising 64 snaps. This data ensemble is decomposed into
modes using the method of snapshots as discussed in § 2.2. A convergence study as in
§ 2.3 is carried out for modal reconstruction of the mixed ensemble. It is found that
35 modes are needed for the error norms to reduce to around 5 %. Thus the model
is constructed by truncating the POD–Galerkin model using the first 50 modes.

In the construction of the hybrid low-dimensional model there are two principal
concerns. The low-dimensional model requires knowledge of mean flow field in the
estimation of the term LM

pr , the Appendix defined in. However, since the hybrid model
is targetted to perform at a parameter value different from those correponding to
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Figure 15. Comparison of time histories of the temporal modal coefficients a(1)–a(6)

obtained from a ten-dimensional model and the computational data for RaΩ = 106.

the data ensemble, the mean flow field obtained from the data ensemble does not
represent the true mean flow field at the target parameter value. The second concern
is the value of the correlation term Dp . In the validation studies, it has been shown
that the term could be successfully evaluated using the DNS values of the temporal



290 N. Hasan and S. Sanghi

1.58 1.60 1.62 1.64 1.66
–80

–60

–40

–20

0

20

40

60

80

a(7)

a(9)

DNS data
M10

τ
1.59 1.60 1.61 1.62

–60

–40

–20

0

20

40

60

1.58 1.60 1.62 1.64 1.66
–80

–60

–40

–20

0

20

40

60

80

a(8)

a(10)

τ
1.59 1.60 1.61 1.62

–60

–40

–20

0

20

40

60

Figure 16. Comparison of time histories of the temporal modal coefficients a(7)–a(10)

obtained from a ten-dimensional model and the computational data for RaΩ = 106.

coefficients a(p). This in turn would necessitate the use of the DNS data at the
target parameter value itself. These issues have a risen because we are dealing with
low-dimensional models for the fluctuating flow, for reasons explained in § 3.1.

A simple solution to the mean flow-field issue is to aproximate it as the mean field
of the mixed data ensemble. As demonstrated in the validation studies the effect of
neglecting the term Dp the low-dimensional model leads to a slight loss of accuracy.
Therefore, as a first approximation in the construction of a hybrid model, Dp is
simply dropped from the hybrid model. The 50-mode hybrid model constructed in
this manner is tested at a target value of RaΩ = 5 × 102. Figure 17 compares the time
histories of the velocity components and temperature at (−0.72, 0) obtained from
integration of the hybrid model without the correlation term Dp , and the full Navier–
Stokes simulations. In this simulation the initial condition is supplied in the form
of values of {a(p), p = 1, . . . , 50} obtained from the numerical data at RaΩ = 5 × 102.
While there are significant deviations over certain portions of the trajectory, the
model predictions agree well qualitatively with the computational predictions in HS.
The period of the time histories is found to be 0.0397, which agrees well with the
rotation period of 0.0396 dimensionless units of the gravity vector at this RaΩ . Thus
the frequency-locking is faithfully captured.
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Figure 17. Comparison of time histories of (a) u(−0.72, 0), (b) v(−0.72, 0) and (c) θ (−0.72,
0) obtained from an approximate fifty-dimensional hybrid model (without the term Dp) with

the computational data at RaΩ = 5 × 102.

Finally, a strategy for incorporating the correlation term Dp in the hybrid model
is developed and the performance of the resulting model is assessed. For notational
convenience, the two sets of DNS data employed in the hybrid model are denoted
as system A (RaΩ = 102) and system B (RaΩ = 103). Denote the correlation terms
evaluated using the DNS data for these systems as (Dp)A and (Dp)B respectively.
Then using a simple Lagrange interpolation of first order, one can approximate the
value of Dp at any desired parameter in the interval bounded by the parameter values
of systems A and B. Symbolically, this may be expressed

Dp =
(
Dp

)
A

[
P − PB

PA − PB

]
+

(
Dp

)
B

[
P − PA

PB − PA

]
. (21)

In (21), P denotes the target value of the parameter while PA and PB denote the
parameter values corresponding to systems A and B respectively. This strategy is
again tested for a 50-mode hybrid model at RaΩ = 5 × 102. The results are compared
with the full DNS simulations in figure 18. There is a marked improvement in the
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Figure 18. Comparison of time histories of (a) u(−0.72, 0), (b) v(−0.72, 0) and (c) θ (−0.72, 0)
obtained from a full fifty-dimensional hybrid model with the computational data at
RaΩ = 5 × 102.

performance of the hybrid model in comparison to the performance without the
correlation term (figure 17). The time histories of velocity and temperature show
good agreement over most of the trajectories. The initial data for time integration
of this model have been supplied by utilizing the computational data at RaΩ = 102

instead of taking a snap of the flow field at RaΩ =5 × 102. After an initial transient
period which corresponds to approximately five ‘g’ cycles, the hybrid model captures
the long-term behaviour of the flow faithfully.

The hybrid model constructed in the manner described above is expected to perform
well across a range of parameters for which the mean flow field and the structure of
the fluctuations are relatively insensitive or vary slowly with changes in the parameter
(RaΩ ). For ranges where large changes in the mean and the fluctuating field are
expected, the strategy proposed in the current work could be extended with data
sampled at a larger number of parameter values spanning the range of interest.
This would capture the trend of the mean flow field as well as the fluctuations
more accurately. The term Dp could also be obtained using higher-order Lagrange
interpolations capturing the nonlinear trends in a more accurate manner.
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4. Conclusions
The present study demonstrates the effectiveness of POD as a tool for the analysis

of a complex fluid flow involving unsteady flow with heat transfer. It has been
demonstrated that relatively few modes are needed to capture the structure of the
unsteady flow field within a specified level of accuracy. A different criterion for
specifying the accuracy of reconstructions based on POD modes, that directly reflects
the accuracy to which the spatio-temporal structure of a given data ensemble can be
represented, has been proposed.

The presence of travelling waves in the flow has been detected by employing POD
on the computational data at RaΩ =103 and RaΩ = 106. At RaΩ = 103, the waves
propagate predominantly in the circumferential direction in the clockwise manner
and are believed to be caused by the interaction between the gravitational buoyancy,
the fluid inertia and the viscous forces. These travelling waves are found to exist for
values of RaΩ in the range 103 − 1.9 × 103. The space–time symmetry of the degenerate
pairs of modes is utilized to estimate the average circumferential wave speeds for
these cases. For RaΩ = 106, the flow is dominated by the centrifugal buoyancy and
the gravitational buoyancy has a very weak influence on the flow field. Travelling
waves are also found in the flow field at this RaΩ . These waves appear to propagate
together with the strong convective current from the hot end towards the cold end of
the horizontal diameter with respect to the rotating observer.

Low-dimensional models based on POD modes have been constructed and issues
involved in their closure arising out of the specific nature of the problem under
consideration have been successfully resolved. An important aspect of POD analysis
that has not been given due importance for non-isothermal flows is the definition
of the inner product space in which the combined decomposition of velocity and
temperature field is desired. It has been shown that for situations where the order of
magnitude of the velocity and the temperature fields is not comparable, the choice of
the proper value of the scaling factor γ is critical to the success of the low-dimensional
model. Having included a sufficient number of modes in the low-dimensional models
so that a sufficient amount of dissipation is present to stabilize their solution for
several hundred rotation cycles of the gravity vector, not more than 20 mode models
were required to accurately capture the temporal dynamics of the system for the five
cases under consideration.

A procedure for constructing a hybrid low-dimensional model aimed at capturing
the flow dynamics over a range of parameter values has been suggested. The procedure
has been tested by constructing the model from a mixed database of an equal number
of snapshots at RaΩ = 102 and RaΩ = 103 and using it to reproduce the flow dynamics
at RaΩ = 5 × 102. The results obtained accurately predict the period of flow using the
low-dimensional model. While the proposed strategy appears to be simple, it has the
potential of refinement, and its effectiveness and robustness need to be investigated.

Appendix
The various coefficients in (20) are defined as

Lpr (τ ) = LGB
pr (τ ) + LCF

pr − LRB
pr + LV

pr − LM
pr,

LGB
pr (τ ) = RagPr

(
LGB1

pr sin
(
Ta1/2Prτ

)
+ LGB2

pr cos
(
Ta1/2Prτ

))
,

LGB1
pr =

∫
φ

(p)
1 φ

(r)
3 dA, LGB2

pr =

∫
φ

(p)
2 φ

(r)
3 dA,
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LRB
pr = RaΩPr

∫ (
xφ

(p)
1 + yφ

(p)
2

)
φ

(r)
3 dA,

LCF
pr = 2Ta1/2Pr

∫ (
φ

(p)
1 φ

(r)
2 − φ

(p)
2 φ

(r)
1

)
dA,

LM
pr =

∫ {
φ

(p)
i

(
φ

(r)
j

∂Ui

∂xj

+ Uj

∂φ
(r)
i

∂xj

)
+ γφ

(p)
3

(
φ

(r)
j

∂U3

∂xj

+ Uj

∂φ
(r)
3

∂xj

)}
dA,

LV
pr =

∫ {
Prφ(p)

i

∂2φ
(r)
i

∂xj∂xj

+ γφ
(p)
3

∂2φ
(r)
3

∂xj∂xj

}
dA,

Qprs =

∫ {
φ

(p)
i φ

(r)
j

∂φ
(s)
i

∂xj

+ γφ
(p)
3 φ

(r)
j

∂φ
(s)
3

∂xj

}
dA,

Fp(τ ) = Ap sin
(
Ta1/2Prt

)
+ Bp cos

(
Ta1/2Prt

)
+ Cp − Dp,

Ap = RagPr

∫
φ

(p)
1 U3 dA, Bp = RagPr

∫
φ

(p)
2 U3 dA,

Cp = λ(r)

∫ {
φ

(p)
i φ

(r)
j

∂φ
(r)
i

∂xj

+ γφ
(p)
3 φ

(r)
j

∂φ
(r)
3

∂xj

}
dA,

Dp = RagPr
{〈

LGB1
pr a

(r)
DNS sin

(
Ta1/2Prt

)〉
+

〈
LGB2

pr a
(r)
DNS cos

(
Ta1/2Prt

)〉}
.

In the above definitions, the integrals are to be evaluated over the entire domain D

of the flow field. The subscripts (i, j ) ∈ [1, 2] and summation over repeating indices is
implied.
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